

# BISCO v13 New program performances





2/41

#### A Implementation of NFRC 100/500

- A.1 Implementation of underlying ISO 15099
- A.2 Boundary conditions according to NFRC 100/500
- A.3 Automatic preparation of geometry and report according to NFRC 100
- A.4 Output of Condensation Index according to NFRC 500
- A.5 Validation report BISCO V13 vs. THERM 7.8

#### B <u>PDF report</u>

- B.1 New function 'Make PDF report'
  - Custom pdf report
  - Summary pdf report
  - Standard pdf report (EN 10077-2 and NFRC 100)

#### C <u>EN ISO standards</u>

- C.1 Gas filling according to EN ISO 673
- C.2 Gas filling according to ISO 15099
- C.3 Air cavities according to ISO 15099

#### D Batch and DXF batch calculations

- D.1 New functions in Batch processing
- D.2 New functions in DXF Batch processing

#### E Derived thermal properties

- E.1 Dialog box split in 'Transmittances' and 'Condensation'
- E.2 Equivant transmittance based on flanking element or based on boundary condition

#### F <u>Miscellaneous</u>

- F.1 Command line program execution
- F.2 BiscoDxf: replaced icons for layer priortities

#### G Online Physibel Portal

- G.1 Youtube Channel: BISCO tutorial video's
- G.2 New tutorial and documentation





Both NFRC 100\* and NFRC 500\*\* have an option to report thermal transmittance and condensation risk based on 2D numerical simulation. The overlying methodology to model heat transfer at boundaries and within frame cavities in the NFRC standards is adopted from ISO 15099\*\*\*.

\*ANSI/NFRC 100 (2023): Procedure for Determining Fenestration Product U-factors \*\*ANSI/NFRC 500 (2023): Procedure for Determining Fenestration Product Condensation Index Ratings \*\*\* ISO 15099 (2003): Thermal performance of Window, Doors, Shading Devices – Detailed calculations

BISCO v13 includes new functions to calculate and report frame thermal transmittance and Condensation Index Rating according to NFRC 100/500





Air cavities in ISO 15099 can be modelled with either:

- Single equivalent thermal conductivity method: EQUIMAT
- Radiosity method (detailed radiation): TRANSMAT

| \land Co | A Colours |          |         |                    |                          |      |                |             |          |          |          |
|----------|-----------|----------|---------|--------------------|--------------------------|------|----------------|-------------|----------|----------|----------|
| Col.     |           | Туре     | Subtype | Physical flow dir. | Geometrical<br>flow dir. | Name | ɛ1/ɛ2<br>[-/-] | λ<br>[W/mK] | с<br>[-] | Standard | Γ        |
| 195      |           | EQUIMAT  | CAVITY  | HOR                | х                        |      | 0.90 / 0.90    | 0.040       | 0.90     | ISO15099 |          |
| 196      |           | TRANSMAT | CAVITY  | HOR                | Х                        |      |                | 0.024       |          | ISO15099 |          |
|          |           |          |         |                    |                          |      |                |             |          |          | <u> </u> |

ISO 15099 can be set as default standard: Settings  $\rightarrow$  Default Standard







5/41

For the calculation of convective heat transfer in frame cavities ISO 15099 differentiates between sill/head and jamb.

 $\rightarrow$  General setting in Calculation Parameters

physibe

|                                                                                |              |          |                |                           |          |              | A Border | U Values |            |
|--------------------------------------------------------------------------------|--------------|----------|----------------|---------------------------|----------|--------------|----------|----------|------------|
| Calculation Parameters                                                         |              |          | ×              |                           |          |              | Bitmap   | U        | Enforced U |
| - Triangulation<br>Contour approximation margin                                | 0            | nixels   | ок             |                           |          |              | Border   | [W/m²K]  | [W/m²K]    |
|                                                                                | JO.          | pinoto   | Consel         |                           |          |              | Left     | 1.207    | 2.962      |
| Iterations<br>Iteration cycles                                                 | 5            | _        | Lance          |                           |          |              | Right    | 5.094    |            |
| Maximum number of iterations<br>(per iteration cvcle)                          | 10000        |          | Set As Default |                           |          |              | Тор      |          |            |
| Maximum temperature difference                                                 | 0.0001       | _ ℃      |                |                           |          |              | Pattom   |          |            |
| Max. heat flow divergence (total object)                                       | 0.001        | %        |                |                           |          |              | Bottom   |          |            |
| Max. heat flow divergence (any node)                                           | 1            | %        |                |                           |          |              |          |          |            |
| Badiation                                                                      |              |          |                |                           |          |              |          |          |            |
| Linear radiation                                                               |              |          |                |                           |          |              |          |          |            |
| Black radiation heat transfer coefficient<br>(linear radiation)                | 5.25         | W/(m².K) |                |                           |          |              |          |          |            |
| Smallest accepted view factor                                                  | 0.001        |          |                |                           | (        |              |          |          |            |
| Number of visibility rays between<br>radiative surfaces                        | 100          |          |                |                           | (        | Jamb section |          |          |            |
| Automatic calculation of thermal proper<br>Recalculate before each iteration c | ties<br>vole |          |                |                           |          |              |          |          |            |
| Use solution temperatures                                                      |              |          |                |                           | • /•     | 1 1 •        |          | 1 1      |            |
| Default temperature difference<br>for hc calculation                           | 5            | °C       |                | Setting                   | g indica | ated II      | n sto    | itus i   | oar        |
| Bitmap border is axis of symmetry                                              |              |          |                |                           |          |              |          |          |            |
| Model properties (for ISO 15099)<br>Jamb section                               |              |          |                |                           |          |              | _        |          |            |
| Castian kaiak                                                                  |              |          |                | Model properties (for ISO | ) 15099) |              |          |          |            |
| Section neight                                                                 | 11           |          |                | • Jamb section            |          |              |          |          |            |
|                                                                                |              |          |                | C Sill/head section       |          |              |          |          |            |
|                                                                                |              |          |                | Section height            | 1        | m            |          |          |            |
|                                                                                |              |          | $\sim$         |                           |          |              |          |          |            |
|                                                                                |              |          |                |                           |          |              |          |          |            |



According to ISO 15099 boundary conditions can be used with simplified or with detailed radiation (view factor method). Both options are available:

- Simplified infrared radiation: BC\_SIMPL
- Detailed infrared radiation: BC\_SKY

physibe

# BC\_SIMPL (global surface coefficient)

Physical flow direction can be set to horizontal, upwards, downwards or any

| 🚕 Col | \land Colours                  |         |                            |                         |                      |           |              |          |   |  |
|-------|--------------------------------|---------|----------------------------|-------------------------|----------------------|-----------|--------------|----------|---|--|
| Col.  | Туре                           | Subtype | Physical 0<br>flow dir. fl | Geometrical<br>low dir. | Name                 | θ<br>[°C] | h<br>[W/m²K] | Standard | - |  |
| 196   | BC_SIMPL                       | HE      |                            |                         |                      | -18.0     | 31.25        | ISO15099 | 1 |  |
|       | Double click to set wind speed |         |                            |                         |                      |           |              |          |   |  |
|       |                                |         | Forced co                  | onvection               |                      |           | ×            |          |   |  |
|       |                                |         | Wind spee                  | ed                      | <mark>5.5</mark> m/s | OK        |              |          |   |  |
|       | Cancel                         |         |                            |                         |                      |           |              |          |   |  |



According to ISO 15099 boundary conditions can be used with simplified or with detailed radiation (view factor method). Both options are available:

- Simplified infrared radiation: BC\_SIMPL
- Detailed infrared radiation: BC\_SKY

# BC\_SKY (view factor based)

Physical flow direction can be set to horizontal, upwards, downwards or any



# A.2 Boundary conditions according to NFRC 100/500

Boundary conditions prescribed by NFRC 100/500:

- Interior conditions:
  - Radiation model = "Automatic Enclosure Model"  $\rightarrow$  BC\_SKY
  - Frame: Standard to NIHIL, manual input of hc (convective film coefficient)

| A Colours |  |        |         |                           |            |               |            |          |   |  |
|-----------|--|--------|---------|---------------------------|------------|---------------|------------|----------|---|--|
| Col.      |  | Туре   | Subtype | Name                      | θa<br>[°C] | hc<br>[W/m²K] | θr<br>[°C] | Standard |   |  |
| 169       |  | BC_SKY | NIHIL   | Interior Wood/Vinyl Frame | 21.0       | 2.44          | 21.0       | NIHIL    | 1 |  |

- Edge and Centre of Glass: Standard to ISO15099

| A Colours |        |         |                       |                            |            |               |            |          |   |  |
|-----------|--------|---------|-----------------------|----------------------------|------------|---------------|------------|----------|---|--|
| Col.      | Туре   | Subtype | Physical<br>flow dir. | Name                       | θа<br>[°С] | hc<br>[W/m²K] | θr<br>[°C] | Standard |   |  |
| 167       | BC_SKY | CONVEC  | HOR                   | Interior - centre of glass | 21.0       | 2.18          | 21.0       | ISO15099 | ľ |  |

- Exterior conditions
  - Radiation model = "Blackbody Model"  $\rightarrow$  BC\_SIMPL
  - Default colour in Colour Database (colour 171)

| <u> </u> | A Colours |          |         |                               |          |              |          |   |  |  |  |
|----------|-----------|----------|---------|-------------------------------|----------|--------------|----------|---|--|--|--|
| Col      | l.        | Туре     | Subtype | Name                          | θ<br>[℃] | h<br>[W/m²K] | Standard |   |  |  |  |
| 171      | 1         | BC_SIMPL | HE      | exterior NFRC 100 (Blackbody) | -18.0    | 31.25        | ISO15099 | Ľ |  |  |  |



Windspeed can be adjusted by double clicking (default wind speed is 5.5 m/s)



8/41

# Double click to adjust glazing height

| Model properties                             |      | ×      |
|----------------------------------------------|------|--------|
| nclination angle<br>(0° -> upward heat flow, | 90 * | ОК     |
| 90° -> horizontal heat flow)                 |      | Cancel |
| Glazing height                               | 1 m  |        |

| Bitmap | Colours             | Calc     | Output | Settings |  |  |  |  |  |  |
|--------|---------------------|----------|--------|----------|--|--|--|--|--|--|
| Dra    | aw                  |          |        |          |  |  |  |  |  |  |
| Lin    | e                   |          |        |          |  |  |  |  |  |  |
| Re     | ctangle             |          |        |          |  |  |  |  |  |  |
| Fill   | l                   |          |        |          |  |  |  |  |  |  |
| Ed     | Edit using BiscoBmp |          |        |          |  |  |  |  |  |  |
| Siz    | e                   |          |        | F8       |  |  |  |  |  |  |
| Cre    | op Bitmap           | Border   | 5      | F9       |  |  |  |  |  |  |
| Ins    | ert/Delete          | Pixel Ba | and    |          |  |  |  |  |  |  |
| Re     | size Pixel          |          |        |          |  |  |  |  |  |  |
| Ro     | tate 90°            |          |        |          |  |  |  |  |  |  |
| lm     | port Bitma          | p        |        |          |  |  |  |  |  |  |
| Lo     | ad Palette          |          |        |          |  |  |  |  |  |  |
| Ch     | ange Coloi          | ur       |        | F5       |  |  |  |  |  |  |
| Cle    | an Colour.          |          |        |          |  |  |  |  |  |  |
| Me     | erge Coloui         | s        |        | F6       |  |  |  |  |  |  |
| Ca     | lc Zones            |          |        |          |  |  |  |  |  |  |
| Sp     | lit Zones           |          |        | F7       |  |  |  |  |  |  |
| Set    | Reduced H           | leat Tra | ansfer | F10      |  |  |  |  |  |  |
| Sp     | lit Interior B      | 3C       |        |          |  |  |  |  |  |  |
| Fill   | Line Draw           | ing      |        |          |  |  |  |  |  |  |
| EN     | 10077 Prep          | paratio  | n      | F11      |  |  |  |  |  |  |
| NF     | RC 100/500          | ) Prepa  | ration | F4       |  |  |  |  |  |  |

physibe

New function which prepares the geometry and report output according to NFRC 100/500:

- Defines boundary conditions (frame, edge of glass and centre of glass)
- Assigns properties to frame cavities according to ISO 15099
- Extends the length of glass to meet required
   150mm
- Selects Derived thermal properties for reporting: Ufr and Ueg



# A.3 Automatic preparation according to NFRC 100/500

### Settings $\rightarrow$ Settings for automatic preparation for NFRC 100/500 calculation

| Undefined Cavities & BCs                                                  |                                          |                                                                    |                   |  |  |  |  |  |  |
|---------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------|-------------------|--|--|--|--|--|--|
| Undefined Cavities & BCs co                                               | olour number                             | 1                                                                  |                   |  |  |  |  |  |  |
| Clean colour                                                              |                                          |                                                                    |                   |  |  |  |  |  |  |
| Delete zones with a                                                       | rea smaller than                         | 25 pix.                                                            |                   |  |  |  |  |  |  |
| Avoid replacing with                                                      | material with lambda >                   | 0.2 W/(m.K)                                                        |                   |  |  |  |  |  |  |
| Detect grooves and                                                        |                                          |                                                                    |                   |  |  |  |  |  |  |
| Window frame cavities—                                                    | irame cavities                           |                                                                    |                   |  |  |  |  |  |  |
| Type of cavities:<br>• EQUIMAT                                            | Assign new colour<br>zone with area grea | for each ater than                                                 | 4 mm²<br>400 pix. |  |  |  |  |  |  |
| C TRANSMAT                                                                | (Smaller zones are<br>Iambda value of sq | grouped in 1 colour with fixed<br>uare cavity with sides equal to: | 2 mm)             |  |  |  |  |  |  |
|                                                                           | First new colour                         |                                                                    | 192               |  |  |  |  |  |  |
| Boundary conditions                                                       |                                          | Default Position of Interior BC                                    |                   |  |  |  |  |  |  |
| Exterior                                                                  | 171                                      | For beat flow parallel to X: • • Left                              |                   |  |  |  |  |  |  |
| Interior (frame)                                                          | 169                                      | C I                                                                | Right             |  |  |  |  |  |  |
| Interior (edge-of-glass)                                                  | 168                                      | For heat flow parallel to Y : 💿                                    | Тор               |  |  |  |  |  |  |
| Interior (glass)                                                          | 167                                      | C I                                                                | Bottom            |  |  |  |  |  |  |
| Window Frame                                                              | 8                                        |                                                                    |                   |  |  |  |  |  |  |
| Fenestration product properties                                           | :                                        |                                                                    |                   |  |  |  |  |  |  |
| 🔽 Jamb section                                                            |                                          | Frame type:                                                        |                   |  |  |  |  |  |  |
| Product height                                                            | 1 m                                      | C Thermally Broken                                                 |                   |  |  |  |  |  |  |
| Glazing length                                                            | 150 mm                                   | <ul> <li>Thermally Improved</li> <li>Wood/Vinyl</li> </ul>         |                   |  |  |  |  |  |  |
| Product position:<br>• Vertical (horizontal hea<br>• Sloped 20° (downward | t transfer)<br> heat transfer)           |                                                                    |                   |  |  |  |  |  |  |

physibel

### DXF format



### Prepared according to NFRC





# A.4 Output of Condensation index according to NFRC 500

#### Edit $\rightarrow$ Derived thermal properties $\rightarrow$ Condensation $\rightarrow$ Condensation Index CI (NFRC 500)

| Temperature factor or Condensation Index     Preferred nomenclature:          C Temperature         Condensation | factor f (EN ISO 10211)<br>n Index CI (NFRC 500)                                                                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Internal surface relative humidity                                                                               | BISCO - Text Output [alu_1_frame_glazed.bsc]                                                                                                                                                                       |
| Surface BH = 100 % (surface condens)                                                                             | ation                                                                                                                                                                                                              |
| Surface RH >= 80                                                                                                 |                                                                                                                                                                                                                    |
| ОК                                                                                                               | Cancel<br>BISCO Calculation Results<br>BISCO data file: alu_l_frame_glazed.bsc<br>Number of nodes = 54018<br>Heat flow divergence for total object = 0.000889711<br>Heat flow divergence for worst node = 0.681271 |
|                                                                                                                  | Condensation Index (NFRC 500) CI = 0.450<br>Surface condensation if $BH > 24 \%$ (at 21.00°C)                                                                                                                      |





12/41

A.5 Validation report BISCO v13 vs. THERM 7.8

Validation report available on the <u>Physibel Knowledge Base</u>:

"A14 – Validation of the program BISCO v13 according to NFRC 100 and ISO 15099:2003: BISCO vs. THERM"







### **B.1 New function 'Make PDF report'**

13/41

BISCO v13



Custom report includes:

physibe

- figures defined under 'Graphic Report Definitions'
- Text output defined under 'Derived thermal properties'

| A Graph | ic Report | Definition      | n               |                 |               |           |          |        |              | x                                |                                   |
|---------|-----------|-----------------|-----------------|-----------------|---------------|-----------|----------|--------|--------------|----------------------------------|-----------------------------------|
| Image   | Create    | Object<br>Lines | Triang.<br>Mesh | Isoth.<br>Lines | Flow<br>Lines | Distances | Fill     | Legend | Caption      | $\left\lceil \cdot \right\rceil$ |                                   |
| 1       | YES       | YES             | NO              | NO              | NO            | YES       | MATERIAL | YES    | Materials    | 1                                |                                   |
| 2       | YES       | YES             | NO              | YES             | NO            | NO        | TEMP     | YES    | Temperatures | 1                                | Figure caption used in pdf report |
| 3       | YES       | YES             | NO              | NO              | YES           | NO        | OFF      | NO     | Heat flow    |                                  |                                   |





### B.1 Type: Summary report

Summary report:

physibe

- Concise auto report (2 pages)
- 'Derived thermal properties' + 2 figures (materials and temperatures)



BISCO v13

<u>overview</u>

16/41

Standard report according to EN 10077-2 or NFRC 100/500:

Includes information as requested by corresponding standard







# C.1 Gas mix according to EN ISO 673







# C.2 Gas mix according to ISO 15099



18/41

# C.3 Air cavities according to ISO 15099







19/41

### (Re)run multiple BISCO projects

| Batch Processing         Files         Add         C: \L         Clear All         C: \L         C: \L | X<br>Isers \jelle \OneDrive - Physibel \Desktop \I1_EQ.bsc<br>Isers \jelle \OneDrive - Physibel \Desktop \I2_EQ.bsc<br>Isers \jelle \OneDrive - Physibel \Desktop \I3_EQ.bsc<br>Isers \jelle \OneDrive - Physibel \Desktop \I4_EQ.bsc<br>Isers \jelle \OneDrive - Physibel \Desktop \I5_EQ.bsc | <ul> <li>Selection of projects</li> </ul> |
|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| Actions                                                                                                |                                                                                                                                                                                                                                                                                                |                                           |
| (Re)triangulate                                                                                        | Generate Word Report                                                                                                                                                                                                                                                                           |                                           |
| ✓ (Re)calculate                                                                                        | Generate PDF Report                                                                                                                                                                                                                                                                            |                                           |
|                                                                                                        | OK Cancel                                                                                                                                                                                                                                                                                      |                                           |

Options:

- (Re)triangulate
- (Re)calculate
- Generate Word report
- Generate PDF report





### D.2 New functions in DXF Batch processing

BISCO v13

# Multiple DXF files can be directly processed into a thermal report according to EN ISO 10077-2, NFRC or EN ISO 10211

| DXF Batch Processing     Files     Add     C:\Users\jelle\One     Clear all     C:\Users\jelle\One      C:\Users\jelle\One     C:\Users\jelle\One     C:\Users\jelle\One     C:\Users\jelle\One     C:\Users\jelle\One     C:\Users\jelle\One     C:\Users\jelle\One     C:\Users\jelle\One     C:\Users\jelle\One     C:\Users\jelle\One     C:\Users\jelle\One     C:\Users\jelle\One     C:\Users\jelle\One     C:\Users\jelle\One     C:\Users\jelle\One     C:\Users\jelle\One     C:\Users\jelle\One     C:\Users\jelle\One     C:\Users\jelle\One     C:\Users\jelle\One     C:\Users\jelle\One     C:\Users\jelle\One     C: | Drive - Physibel\Desktop\I1_EQ.dxf<br>Drive - Physibel\Desktop\I2_EQ.dxf<br>Drive - Physibel\Desktop\I3_EQ.dxf<br>Drive - Physibel\Desktop\I4_EQ.dxf<br>Drive - Physibel\Desktop\I5_EQ.dxf<br>Drive - Physibel\Desktop\I6_EQ.dxf | × Selection of DXF files                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| Actions<br>Generate BISCO project and bitme<br>O Don't prepare<br>Prepare for EN 10007<br>Prepare for NFRC 100/500<br>Triangulate and calculate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ap ☐ Generate Word Report<br>↓ Generate PDF Report<br>OK Cancel                                                                                                                                                                  |                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Options:<br>- Select standard, if pr<br>NFRC 100/500 or EN<br>- Triangulate and calc<br>- Generate Word repor<br>- Generate PDF repor                                                                                            | eparation is desired (e.g.<br>ISO 10077-2)<br>culate<br>ort |



22/41

### Multiple DXF files





### Thermal reports (pdf)







## E.1 Dialog box split in 'Transmittance' and 'Condensation'

overview

23/41

| mittances ondensation                                                                                                                                         |                                                                                                                                                                                         | Transmittances Condensation                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Linear thermal transmittance (psi)                                                                                                                            |                                                                                                                                                                                         | Temperature factor or Condensation Index                                                        |
| Subscript:                                                                                                                                                    |                                                                                                                                                                                         | Preferred nomenclature: C Temperature factor f (EN ISO 10211)                                   |
| ✓ 1st flanking element<br>U value:                                                                                                                            | I▼     2nd flanking element       U value:     U value:                                                                                                                                 | Condensation Index LI (NERC 500)                                                                |
| Cell billing border     C Right bitmap border     C Top bilmap border     C Bottom bilmap border     C Along distance no.: 1      Width along distance no.: 2 | Certo turnap border     Right bitmap border     C Top bitmap border     C Bottom bitmap border     Along distance no.:     Uvidth along distance no.:     Add width distance no.:     2 | Inside zone RH: 50 %<br>Inside zone RH = 100 % (surface condensation)<br>Inside zone RH >= 80 % |
| Equivalent themal transmittance (U) - based Subscript:  Element width along dist.                                                                             | a on flanking elements with 1D U values                                                                                                                                                 |                                                                                                 |
| U value:<br>C Left bitmap border<br>C Top bitmap border<br>C Bottom bitmap border<br>C Along distance no.: 1<br>Width along distance no.: 2                   | U value:<br>C Left bitmap border<br>Right bitmap border<br>C Top bitmap border<br>C Bottom bitmap border<br>C Along distance no.:<br>Width along distance no.:<br>2                     |                                                                                                 |
| Equivalent thermal transmittance (U) - based                                                                                                                  | d on incoming heat flow from boundary condition                                                                                                                                         |                                                                                                 |
| Element 1<br>Subscript: <b>eq1</b><br>Width along distance no.: <b>1</b>                                                                                      | Element 2 Subscript: eq2 Width along distance no.: 2                                                                                                                                    |                                                                                                 |
| Heat flow BC colour no.: 174 Add BC colour no.: 182                                                                                                           | Heat flow BC colour no.: 174 Add BC colour no.: 182                                                                                                                                     |                                                                                                 |
|                                                                                                                                                               | 1                                                                                                                                                                                       |                                                                                                 |





### **E.2 Derived Thermal Properties extended**

overview

BISCO v13



Adjustable subscript (e.g. Ψ<sub>tj</sub> U<sub>tj</sub>, U<sub>eg</sub>, U<sub>f</sub>,...)

 $\Psi$  : linear thermal transmittance

U : equivalent thermal transmittance based on flanking elements with 1D U-value (e.g. EN ISO 10077-2, EN ISO 12631)

U : equivalent thermal transmittance based on incoming heat flow from boundary condition (e.g. NFRC 100)

# F.1 Command line program execution

25/41

New options in running BISCO via command line

BISCO can be run from the command line prompt with a data file path (including directory and file extension .bsc) as parameter.

The switch "/Automation" can be added to the command line prompt determining which actions need to be taken after opening the .bsc data file, analogous to the choices offered in the Batch Processing dialog box (D.7):

- Either "/EN10077" or "/NFRC" for preparation for EN ISO 10077-2 or NFRC 100/500, respectively.
- "/triangulate" to force triangulation.
- "/calculate" for the thermal calculation.
- "/word", "/pdf" and/or "/pdf\_summary" for the different types of reports.

#### Command Prompt

Microsoft Windows [Version 10.0.22631.4169] (c) Microsoft Corporation. All rights reserved.

"c:\...\Physibel\BISCO13\BISCO.exe" "...\Documents\Physibel\BISCO13\Demofiles\1 - WINDOWS & DOORS\shutter\_box.bsc" /Automation /EN10077 /triangulate /calculate /pdf\_summary



Adding only the switch "/Automation", prepares following: EN ISO 10077-2, triangulates, calculates and make MS WORD report files.



Х

### Icons for layer priority and loading layer definitions replaced

| 🕼 Layers 📃 🖻 🕱 |     |                      |               |      |  |  |  |
|----------------|-----|----------------------|---------------|------|--|--|--|
| <u> </u>       | No. | Name                 | Fill Mode     | Col. |  |  |  |
| 늵              | 1   | 060_1_EPDM           | FILL CONTOURS | 60   |  |  |  |
|                | 2   | 044_1_POLYAMIDE      | FILL CONTOURS | 44   |  |  |  |
|                | 3   | 167_2_INSIDE         | FLOOD FILL    | 167  |  |  |  |
|                | 4   | 171_2_OUTSIDE        | FLOOD FILL    | 171  |  |  |  |
|                | 5   | 000_0_BORDERLINES    | LINES         | 0    |  |  |  |
|                | 6   | 018_1_GLASS          | FILL CONTOURS | 18   |  |  |  |
|                | 7   | 086_1_POLYSULPHIDE   | FILL CONTOURS | 86   |  |  |  |
|                | 8   | 100_1_POLYSOBUTYLENE | FILL CONTOURS | 100  |  |  |  |





### Link to BISCO Youtube channel





## G.2 Knowledge Base: new tutorials and documentation

overview

contact

#### log in to portal via www.physibel.be Physibel: building physics software + 0 ← → C ① ew.be/physibel/en N | FR | LOGIN products industries about us training knowledge base physibel Building physics software for modelling, analyzing and optimizing façade elements With Physibel building physics software, you get the powerful heat transfer engineering software to model, analyze and optimize whole buildings, 2D/3D building components and facade elements, guickly and accurately, in accordance with the most common international standards. Physibel software is a cutting-edge building physics analysis and design software for modelling, analyzing and optimizing building envelope systems. DISCOVER OUR SOFTWARE SCHEDULE TRAINING

G.2 Knowledge Base: new tutorials and documentation

29/41

 $\times$ Knowledge | Physibel portal + ×  $\leftarrow \rightarrow c$ physibel-portal/public/knowledge physibel Portal Licences Users Knowledge base Support Website 🚨 jelle **Knowledge Base** Search too floor × All software \$ \$ Q Search All categories Bisco validation EN ISO 11855-2 floor heating O EN 15377 Annex D of the standard EN ISO 11855-2:2015 contains a test example that must be used to verify a steady state numerical calculation program. The program BISCO is used to simulate the test example. keywords: BISCO, EN ISO 11855-2, floor heating, validation, standard Download Pdf Watch video Access project files, document and/or video Thermal analysis of a floor heating system For a floor heating system, the water temperature course and the floor temperature distribution are simulated using the transient programs BISTRA and VOLTRA, both in steady and transient state. Keywords: BISTRA, VOLTRA, floor heating, cooling, inertia



# BISCO v13 New program performances



www.physibel.be/bisco

downloadable program demo version